Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice
نویسندگان
چکیده
The cholinesterases, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) (pseudocholinesterase), are abundant in the nervous system and in other tissues. The role of AChE in terminating transmitter action in the peripheral and central nervous system is well understood. However, both knowledge of the function(s) of the cholinesterases in serum, and of their metabolic and endocrine regulation under normal and pathological conditions, is limited. This study investigates AChE and BChE in sera of dystrophin-deficient mdx mutant mice, an animal model for the human Duchenne muscular dystrophy (DMD) and in control healthy mice. The data show systematic and differential variations in the concentrations of both enzymes in the sera, and specific changes dictated by alteration of hormonal balance in both healthy and dystrophic mice. While AChE in mdx-sera is elevated, BChE is markedly diminished, resulting in an overall cholinesterase decrease compared to sera of healthy controls. The androgen testosterone (T) is a negative modulator of BChE, but not of AChE, in male mouse sera. T-removal elevated both BChE activity and the BChE/AChE ratio in mdx male sera to values resembling those in healthy control male mice. Mechanisms of regulation of the circulating cholinesterases and their impairment in the dystrophic mice are suggested, and clinical implications for diagnosis and treatment are considered.
منابع مشابه
Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions
Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...
متن کاملSubtle Neuromuscular Defects in Utrophin-deficient Mice
Utrophin is a large cytoskeletal protein that is homologous to dystrophin, the protein mutated in Duchenne and Becker muscular dystrophy. In skeletal muscle, dystrophin is broadly distributed along the sarcolemma whereas utrophin is concentrated at the neuromuscular junction. This differential localization, along with studies on cultured cells, led to the suggestion that utrophin is required fo...
متن کاملUtrophin localization in normal and dystrophin-deficient heart.
BACKGROUND The localization of dystrophin at the sarcolemma of cardiac skeletal fibers and cardiac Purkinje fibers has been described. Dystrophin deficiency produces clinical manifestations of disease in skeletal muscles and hearts of patients with Duchenne and Becker muscular dystrophy. Utrophin (or dystrophin-related protein), a dystrophin homologous protein, was found to be expressed in feta...
متن کاملA nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice
Dystrophin-deficient muscles experience large reductions in expression of nitric oxide synthase (NOS), which suggests that NO deficiency may influence the dystrophic pathology. Because NO can function as an antiinflammatory and cytoprotective molecule, we propose that the loss of NOS from dystrophic muscle exacerbates muscle inflammation and fiber damage by inflammatory cells. Analysis of trans...
متن کاملSarcospan-deficient mice maintain normal muscle function.
Sarcospan is an integral membrane component of the dystrophin-glycoprotein complex (DGC) found at the sarcolemma of striated and smooth muscle. The DGC plays important roles in muscle function and viability as evidenced by defects in components of the DGC, which cause muscular dystrophy. Sarcospan is unique among the components of the complex in that it contains four transmembrane domains with ...
متن کامل